瑞士化学工程师找到一种不会导致质量下降的塑料回收方法
你产生多少塑料垃圾?
根据2022年的一份报告,绿色和平组织估计美国每年产生5100万吨塑料垃圾,平均每人约309磅。
但你会回收这些塑料垃圾吗?
不幸的是,根据报告,尽管您尽了最大努力,只有大约5%的塑料垃圾被回收。
由于包括过度承诺和产能问题,以及技术上无法回收某些类型的塑料等多种因素,美国约95%的塑料垃圾最终被填埋。
这是一个问题。
塑料由石油制成,石油是一种化石燃料,塑料的制造是导致气候危机的一个重要因素。未经妥善回收的塑料进入垃圾填埋场后不易分解;相反,它会扼杀野生动物,污染土壤并破坏生态系统。
如果塑料被吹入海洋,它也会破坏我们重要的海洋生态系统。当它最终分解时,微塑料最终会导致动物死亡,甚至对我们的身体也有不良的健康影响。
为了解决这个全球问题,全球的科学家致力于寻找有效可靠的塑料回收方式。
传统的塑料回收包括将塑料粉碎、熔化并重新塑形为新产品。
虽然成功,但这会导致质量下降,因为塑料在回收过程的每一个阶段都会变得更糟。
瑞士化学工程师找到一种不会导致质量下降的塑料回收方法
瑞士苏黎世联邦理工学院的科学家们找到了一个解决方案。在最近发表于《自然化学工程》杂志上的一篇论文中,由催化工程教授Javier Pérez-Ramírez领导的研究团队阐述了塑料回收的开创性未来。
通过化学回收的过程,科学家们看到了使用我们现有的塑料来制造世界目前努力避免使用的化石燃料产品的机会,正如研究人员在声明中解释的那样:
“化学回收涉及将长链塑料分子(聚合物)分解成其基本构件(单体),这些单体可以重新组装成新的高质量塑料,从而创造一个真正可持续的循环。
随着化学回收方法的发展,最初的重点是将这些长的聚合物链分解成可以用作液体燃料或润滑剂的短链分子。这为塑料垃圾提供了第二次生命,可以作为汽油、喷气燃料或引擎油使用。”
在化学回收过程的开发中,研究人员分解了两种顽固的塑料,聚乙烯和聚丙烯。
第一步是将塑料容纳在一个钢制罐中。与塑料不同,钢罐在塑料熔化时不会融化。然后向罐中加入氢气以及含金属的粉末作为催化剂。
科学家在这个项目中使用了钌,因为他们认为它在帮助分解塑料以形成所需分子方面最为有效。
添加钌的特定化合物在形成这种反应时不会释放甲烷或丙烷,从而避免将其他不希望的副产品释放到大气中。
结果是什么?
一种超粘的熔融塑料。但如合著者Antonio José Martín所解释的,达到这一点还需要一些额外的工作:
“熔融塑料的粘度是蜂蜜的一千倍。关键是如何在罐中搅拌它,以确保催化剂粉末和氢气彻底混合。”
研究人员必须确定搅拌塑料的刀片形状和速度,以使过程有效。在声明中,研究人员解释了帮助他们达到最终设计的模拟和测试:
“使用与轴平行的叶片的叶轮来搅拌塑料效果最佳。与带有倾斜叶片的螺旋桨或涡轮形搅拌器相比,这种方法可以实现更均匀的混合和更少的流动涡旋。搅拌速度同样至关重要。它既不能太慢也不能太快;理想的速度接近每分钟1000转。”
瑞士化学工程师找到一种不会导致质量下降的塑料回收方法
现在,研究人员已经发表了他们的成功研究项目,包括一个数学公式,使他们的化学回收过程可以被复制,研究人员希望在我们的星球的未来,更一致和有效的塑料回收不会太远。
现在,继续回收:很快你的废塑料也许就能像这样被分解。
注:上文为机器翻译,或有不准,请参考下面原文
来源:TwistedSifter

Swiss Chemical Engineers Find A Way To Recycle Plastic Without Deterioration

How much plastic waste do you generate?

In a 2022 report, Greenpeace estimated that the US generates 51 million tons of plastic waste every year, amounting to about 309 pounds of plastic per person.

But you recycle that, right?

Unfortunately, according to the report, despite your best efforts, only about 5% of plastic waste is recycled.

Due to many factors, including overpromising and capacity issues, to technological inabilities to recycle some types of plastic, around 95% of plastic waste in the US ends up in landfill.

This is a problem.

With plastic made of oil, a fossil fuel, the creation of plastic is a huge contributory factor to the climate crisis. Plastic that isn’t properly recycled and goes to landfill doesn’t break down easily; instead it chokes wildlife, contaminates soil and ruins ecosystems.

If it ends up blowing into the ocean, it damages our vital marine ecosystems too. When it does eventually break down, microplastics end up killing animals and even causing adverse health effects inside our bodies too.

To remedy this global problem, scientists around the world are committed to finding efficient and reliable ways to recycle plastics.

Traditional plastic recycling involves the plastic being shredded, melted and reformed into new products.

While successful, this results in deteriorating quality, as the plastic gets worse with each stage of the recycling process.

Scientists at ETH Zurich, Switzerland, have a solution. In a recent paper, published in Nature Chemical Engineering, a research team led by Javier Pérez-Ramírez, Professor of Catalysis Engineering explain a pioneering future for plastic recycling.

Using processes of chemical recycling, the scientists have seen the opportunity to use our existing plastic to create some of the fossil fuel products that the world is currently struggling to avoid using, as the researchers explain in the statement:

“Chemical recycling involves breaking down long-chain plastic molecules (polymers) into their fundamental building blocks (monomers), which can be reassembled into new, high-quality plastics, creating a truly sustainable cycle.

As the approach of chemical recycling develops, the initial focus is on breaking down these long polymer chains into shorter-chain molecules that can be used as liquid fuels, say, or lubricants. This gives plastic waste a second life as petrol, jet fuel or engine oil.”

In their developments of the chemical recycling process, the researchers broke down two stubborn types of plastic, polyethylene and polypropylene.

The first step is to contain the plastic in a steel tank. Unlike the plastic, the steel tank won’t melt when the plastic does. Hydrogen gas is added to the tank, as well as a metal containing powder to act as a catalyst.

Scientists used ruthenium in this project, because they deemed it to be the most efficient at helping to break down the plastic in a way that would form the desired molecules.

The specific compounds of ruthenium, when added to form this reaction, wouldn’t release methane or propane, thus avoiding releasing other undesirable byproducts into the atmosphere.

What was the result?

A super thick molten plastic. But it takes some additional work to get there, as explained by co-author Antonio José Martín:

“The molten plastic is a thousand times thicker than honey. The key is how you stir it in the tank to ensure the catalyst powder and hydrogen get mixed right through.”

The researchers had to determine exactly what shape and speed of blade the plastic should be stirred with to make the process effective. In the statement, the researchers explained the simulations and tests that helped them reach the ultimate design:

“The plastic is best stirred using an impeller with blades parallel to the axis. Compared to a propeller with angled blades or a turbine-shaped stirrer, this results in more even mixing and fewer flow vortices. The stirring speed is equally crucial. It must be neither too slow nor too fast; the ideal speed is close to 1,000 revolutions per minute.”

Having now published their successful research project, including a mathematical formula that allows their chemical recycling process to be replicated, the researchers hope that more consistent and effective plastic recycling is not too far off in our planet’s future.

For now, keep recycling: and there’s hope that your waste plastic may be broken down like this very soon.

 

原文始发于微信公众号(艾邦高分子):瑞士化学工程师找到一种不会导致质量下降的塑料回收方法

作者 808, ab